3.311 \(\int \cot ^5(e+f x) (a+b \tan ^2(e+f x))^{3/2} \, dx\)

Optimal. Leaf size=161 \[ -\frac{\left (8 a^2-12 a b+3 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a}}\right )}{8 \sqrt{a} f}+\frac{(a-b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a-b}}\right )}{f}-\frac{a \cot ^4(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{4 f}+\frac{(4 a-5 b) \cot ^2(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{8 f} \]

[Out]

-((8*a^2 - 12*a*b + 3*b^2)*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a]])/(8*Sqrt[a]*f) + ((a - b)^(3/2)*ArcTanh
[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a - b]])/f + ((4*a - 5*b)*Cot[e + f*x]^2*Sqrt[a + b*Tan[e + f*x]^2])/(8*f) -
(a*Cot[e + f*x]^4*Sqrt[a + b*Tan[e + f*x]^2])/(4*f)

________________________________________________________________________________________

Rubi [A]  time = 0.222276, antiderivative size = 161, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 7, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.28, Rules used = {3670, 446, 98, 151, 156, 63, 208} \[ -\frac{\left (8 a^2-12 a b+3 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a}}\right )}{8 \sqrt{a} f}+\frac{(a-b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a-b}}\right )}{f}-\frac{a \cot ^4(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{4 f}+\frac{(4 a-5 b) \cot ^2(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{8 f} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]^5*(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

-((8*a^2 - 12*a*b + 3*b^2)*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a]])/(8*Sqrt[a]*f) + ((a - b)^(3/2)*ArcTanh
[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a - b]])/f + ((4*a - 5*b)*Cot[e + f*x]^2*Sqrt[a + b*Tan[e + f*x]^2])/(8*f) -
(a*Cot[e + f*x]^4*Sqrt[a + b*Tan[e + f*x]^2])/(4*f)

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \cot ^5(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (a+b x^2\right )^{3/2}}{x^5 \left (1+x^2\right )} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \frac{(a+b x)^{3/2}}{x^3 (1+x)} \, dx,x,\tan ^2(e+f x)\right )}{2 f}\\ &=-\frac{a \cot ^4(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{4 f}-\frac{\operatorname{Subst}\left (\int \frac{\frac{1}{2} a (4 a-5 b)+\frac{1}{2} (3 a-4 b) b x}{x^2 (1+x) \sqrt{a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{4 f}\\ &=\frac{(4 a-5 b) \cot ^2(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{8 f}-\frac{a \cot ^4(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{4 f}+\frac{\operatorname{Subst}\left (\int \frac{\frac{1}{4} a \left (8 a^2-12 a b+3 b^2\right )+\frac{1}{4} a (4 a-5 b) b x}{x (1+x) \sqrt{a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{4 a f}\\ &=\frac{(4 a-5 b) \cot ^2(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{8 f}-\frac{a \cot ^4(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{4 f}-\frac{(a-b)^2 \operatorname{Subst}\left (\int \frac{1}{(1+x) \sqrt{a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{2 f}+\frac{\left (8 a^2-12 a b+3 b^2\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{16 f}\\ &=\frac{(4 a-5 b) \cot ^2(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{8 f}-\frac{a \cot ^4(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{4 f}-\frac{(a-b)^2 \operatorname{Subst}\left (\int \frac{1}{1-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tan ^2(e+f x)}\right )}{b f}+\frac{\left (8 a^2-12 a b+3 b^2\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tan ^2(e+f x)}\right )}{8 b f}\\ &=-\frac{\left (8 a^2-12 a b+3 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a}}\right )}{8 \sqrt{a} f}+\frac{(a-b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a-b}}\right )}{f}+\frac{(4 a-5 b) \cot ^2(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{8 f}-\frac{a \cot ^4(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{4 f}\\ \end{align*}

Mathematica [A]  time = 1.36151, size = 140, normalized size = 0.87 \[ \frac{\left (-8 a^2+12 a b-3 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a}}\right )+\sqrt{a} \left (8 (a-b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a-b}}\right )+\cot ^2(e+f x) \sqrt{a+b \tan ^2(e+f x)} \left (-2 a \cot ^2(e+f x)+4 a-5 b\right )\right )}{8 \sqrt{a} f} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]^5*(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

((-8*a^2 + 12*a*b - 3*b^2)*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a]] + Sqrt[a]*(8*(a - b)^(3/2)*ArcTanh[Sqrt
[a + b*Tan[e + f*x]^2]/Sqrt[a - b]] + Cot[e + f*x]^2*(4*a - 5*b - 2*a*Cot[e + f*x]^2)*Sqrt[a + b*Tan[e + f*x]^
2]))/(8*Sqrt[a]*f)

________________________________________________________________________________________

Maple [B]  time = 0.197, size = 5224, normalized size = 32.5 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)^5*(a+b*tan(f*x+e)^2)^(3/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}} \cot \left (f x + e\right )^{5}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^5*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*tan(f*x + e)^2 + a)^(3/2)*cot(f*x + e)^5, x)

________________________________________________________________________________________

Fricas [A]  time = 1.89837, size = 1817, normalized size = 11.29 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^5*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[-1/16*(8*(a^2 - a*b)*sqrt(a - b)*log((b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a - b) + 2*a - b)/
(tan(f*x + e)^2 + 1))*tan(f*x + e)^4 - (8*a^2 - 12*a*b + 3*b^2)*sqrt(a)*log((b*tan(f*x + e)^2 - 2*sqrt(b*tan(f
*x + e)^2 + a)*sqrt(a) + 2*a)/tan(f*x + e)^2)*tan(f*x + e)^4 - 2*((4*a^2 - 5*a*b)*tan(f*x + e)^2 - 2*a^2)*sqrt
(b*tan(f*x + e)^2 + a))/(a*f*tan(f*x + e)^4), 1/16*(16*(a^2 - a*b)*sqrt(-a + b)*arctan(-sqrt(b*tan(f*x + e)^2
+ a)*sqrt(-a + b)/(a - b))*tan(f*x + e)^4 + (8*a^2 - 12*a*b + 3*b^2)*sqrt(a)*log((b*tan(f*x + e)^2 - 2*sqrt(b*
tan(f*x + e)^2 + a)*sqrt(a) + 2*a)/tan(f*x + e)^2)*tan(f*x + e)^4 + 2*((4*a^2 - 5*a*b)*tan(f*x + e)^2 - 2*a^2)
*sqrt(b*tan(f*x + e)^2 + a))/(a*f*tan(f*x + e)^4), 1/8*((8*a^2 - 12*a*b + 3*b^2)*sqrt(-a)*arctan(sqrt(b*tan(f*
x + e)^2 + a)*sqrt(-a)/a)*tan(f*x + e)^4 - 4*(a^2 - a*b)*sqrt(a - b)*log((b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x
+ e)^2 + a)*sqrt(a - b) + 2*a - b)/(tan(f*x + e)^2 + 1))*tan(f*x + e)^4 + ((4*a^2 - 5*a*b)*tan(f*x + e)^2 - 2*
a^2)*sqrt(b*tan(f*x + e)^2 + a))/(a*f*tan(f*x + e)^4), 1/8*((8*a^2 - 12*a*b + 3*b^2)*sqrt(-a)*arctan(sqrt(b*ta
n(f*x + e)^2 + a)*sqrt(-a)/a)*tan(f*x + e)^4 + 8*(a^2 - a*b)*sqrt(-a + b)*arctan(-sqrt(b*tan(f*x + e)^2 + a)*s
qrt(-a + b)/(a - b))*tan(f*x + e)^4 + ((4*a^2 - 5*a*b)*tan(f*x + e)^2 - 2*a^2)*sqrt(b*tan(f*x + e)^2 + a))/(a*
f*tan(f*x + e)^4)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)**5*(a+b*tan(f*x+e)**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}} \cot \left (f x + e\right )^{5}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^5*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e)^2 + a)^(3/2)*cot(f*x + e)^5, x)